From extension of Loop's approximation scheme to interpolatory subdivisions

نویسندگان

  • Charles K. Chui
  • Qingtang Jiang
چکیده

The minimum-supported bivariate C2-cubic spline on a 6-directional mesh constructed in our previous work [2] can be used to extend Loop’s approximation subdivision scheme to introduce some parameter for controlling surface geometric shapes. This extension is achieved by considering matrix-valued subdivisions, resulting in subdivision templates of the same 1-ring template size as Loop’s scheme, but with 2-dimensional matrix-valued weights. Another feature accomplished by considering such an extension is that the two components of the refinable vector-valued spline function can be reformulated, by taking certain linear combinations, to convert the approximation scheme to an interpolatory scheme, but at the expense of an increase in template size for the edge vertices. To maintain the 1-ring template size with guarantee of C2 smoothness for interpolatory surface subdivisions, a non-spline solution is needed, by applying some constructive scheme such as the procedure discussed in our recent work [4]. The main objective of this paper is to develop the corresponding matrix-valued 1-ring templates for the extraordinary vertices of arbitrary valences, for all of the three schemes mentioned above: the extended Loop approximation scheme, its conversion to an interpolatory scheme, and the non-spline 1-ring interpolatory scheme. The discrete Fourier transform (DFT) is applied to analyze the spectral properties of the corresponding subdivision matrices, assuring that the eigenvalues of the subdivision matrices satisfy certain conditions for C1 smoothness at the extraordinary vertices for all of the three considerations in this paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix-valued Symmetric Templates for Interpolatory Surface Subdivisions, I: Regular Vertices

The objective of this paper is to introduce a general procedure for deriving interpolatory surface subdivision schemes with “symmetric subdivision templates” (SSTs) for regular vertices. While the precise definition of “symmetry” will be clarified in the paper, the property of SSTs is instrumental to facilitate application of the standard procedure for finding symmetric weights for taking weigh...

متن کامل

A piecewise polynomial approach to analyzing interpolatory subdivision

The four-point interpolatory subdivision scheme of Dubuc and its generalizations to irregularly spaced data studied by Warren and by Daubechies, Guskov, and Sweldens are based on fitting cubic polynomials locally. In this paper we analyze the convergence of the scheme by viewing the limit function as the limit of piecewise cubic functions arising from the scheme. This allows us to recover the r...

متن کامل

Applications of optimally local interpolation to interpolatory approximants and compactly supported wavelets

The objective of this paper is to introduce a general scheme for the construction of interpolatory approximation formulas and compactly supported wavelets by using spline functions with arbitrary (nonuniform) knots. Both construction procedures are based on certain “optimally local” interpolatory fundamental spline functions which are not required to possess any approximation property.

متن کامل

Convexity preservation of the four-point interpolatory subdivision scheme

In this note we examine the convexity preserving properties of the (linear) fourpoint interpolatory subdivision scheme of Dyn, Gregory and Levin when applied to functional univariate strictly convex data. Conditions on the tension parameter guaranteeing preservation of convexity are derived. These conditions depend on the initial data. The resulting scheme is the four-point scheme with tension ...

متن کامل

Refinable bivariate quartic and quintic C2-splines for quadrilateral subdivisions

Refinable compactly supported bivariate C quartic and quintic spline function vectors on the four-directional mesh are introduced in this paper to generate matrix-valued templates for approximation and Hermite interpolatory surface subdivision schemes, respectively, for both the √ 2 and 1-to-4 split quadrilateral topological rules. These splines have their full local polynomial preservation ord...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer Aided Geometric Design

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2008